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Why Study Neutrino Oscillations?
4 A. Radovic, JETP January 2018

Neutrino oscillations raised as many questions as it answered: 
• Why is lepton sector mixing much larger than quark sector 
mixing? Is θ23 maximal? 

• What is the hierarchy of neutrino masses?  
• Is there CP violation in the lepton sector?

Illustration: Sandbox Studio via symmetry magazine
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Precise measurements:              
Δm232 and sin2(2θ23) for 
neutrinos and antineutrinos 
 
Strong Constraints on:                                     
θ23 octant                                            
δcp                                                                              
mass hierarchy                         
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By measuring beam muon neutrinos which have oscillated to 
electron neutrinos we gain the power to constrain: 

θ23 octant                                            
δcp                                                                             
mass hierarchy                         

~400
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By measuring beam muon neutrinos which have oscillated to 
electron neutrinos we gain the power to constrain: 

θ23 octant                                            
δcp                                                                             
mass hierarchy                         

From S. Parke, “Neutrino Oscillation Phenomenology”  
in Neutrino Oscillations: Present Status and Future Plans 

Electron neutrinos experience 
an extra interaction as they  
pass through matter, modifying  
oscillation probabilities, giving us a 
window into the mass hierarchy.



810 km

MINOS, Sudan

Studying oscillations 
over a 810km 
baseline with two 
functionally identical 
detectors and the 
worlds most powerful 
muon neutrino beam, 
NuMI.

NuMI Off-axis νe Appearance
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Beam Exposure
14 A. Radovic, JETP January 2018

•8.85x1020 POT in 14 
kton equivalent 
detector 
•50% more 
exposure than the 
2016 analysis 

•Currently running in 
anti-neutrino mode 

•Running at 700 kW 
design goal since 
June 2016!



The NOvA Detectors
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15
 m

4 m

60 m

16 m
Optimized for electron ID, fine 
segmentation, Low-Z, and 
62% Active.



The NOvA Detectors
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15
 m

4 m

60 m

16 m
ND: 330 ton, 1km from source. 
FD: 14 kton, 810km from 
source.



16 Cell  
PVC 

Extrusion

3.87cm
6.0cm

15.6m

Scintillator cell with looped  
WLS Fiber.

APD

Detector Technology
17 A. Radovic, JETP January 2018
•  PVC extrusion + Liquid Scintillator 

• mineral oil + 5% pseudocumene 
• Read out via WLS fiber to APD 

• FD has ~344,000 channels 
• muon crossing far end ~40 PE 

• Layered planes of orthogonal views
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NOνA Event Topologies
18 A. Radovic, JETP January 2018

1 radiation 
length = 38cm  
(6 cell depths, 
10 cell widths)



What’s New?
19 A. Radovic, JETP January 2018

•More data, 50% more than our last oscillation update. 
•Improved analysis, continued use of deep learning tools for our 
appearance and now also for our disappearance measurements. 
Binning in energy resolution that better exploits the information in 
the existing data. 

•Retuned cross section modeling, continued development of 
how we treat cross sections including crucial multi-nucleon 
effects. 

•Detector simulation improvements, dramatically reducing 
some of our largest uncertainties in previous measurements.  

•Data driven flux estimates, developed by MINERvA.



Deep Learning Inspired PID: νe & νμ Selection
20 A. Radovic, JETP January 2018

“A Convolutional Neural Network Neutrino Event Classifier” 
A. Aurisano, A. Radovic, and D. Rocco et al 
Journal of Instrumentation, Volume 11, September 2016

Previously only used for 
our νe analysis, now our 
νμ analysis also features 
the same event selection 
technique based on 
ideas from computer 
vision and deep 
learning. 

Additionally now used to 
reclaim a new class of 
previously rejected νe 
events. 
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Simulation
22 A. Radovic, JETP January 2018

• Beam hadron production, propagation, neutrino flux: GEANT4/External Data 
• Cosmic ray flux: Data Triggers 
• Neutrino Interactions and FSI modeling: GENIE v2.12.2 
• Detector Simulation: GEANT4 
• Readout electronics and DAQ: Custom simulation routines

Simulation: Locations of neutrino interactions  
that produce activity in the Near Detector

X 
(m

)

(linear scale)

viewed from above



Retuned Interaction Modeling
23 A. Radovic, JETP January 2018
• Nuclear effects on the initial state (nuclear charge screening/"RPA" effect) and 
reactions themselves (multi-nucleon ejection e.g. 2p2h via Meson Exchange Currents 
(MEC)) remain important components of our interaction model, particularly of the 
hadronic energy component of our interactions. 

• Theory for these effects and how they fit together remains incomplete and model 
evidence ambiguous. 

“Meson Exchange Current (MEC) Models in 
Neutrino Interaction Generators” 

  AIP Conf.Proc. 1663 (2015) 030001 
Teppei Katori 

• Important that we not 
just have the best 
possible central value 
tune, but also 
appropriately 
conservative 
uncertainties.

http://inspirehep.net/author/profile/Katori%2C%20Teppei?recid=1229336&ln=en
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=

• Continue to tune MEC to match the excess in our data, now fit using default empirical 
MEC’s* model for energy transfer to the hadronic system (q0). 

• QE RPA from the Valencia group via Richard Gran** now included in central value tune. 
• New MEC and RPA uncertainties that better capture limits of theory & data constraints.

*   “Meson Exchange Current (MEC) Models in Neutrino Interaction Generators”, Teppei Katori, NuInt12 Proceedings, arXiv:1304.6014  
**  “Model uncertainties for Valencia RPA effect for MINERvA”, Richard Gran, FERMILAB-FN-1030-ND, arXiv:1705.02932 

https://arxiv.org/find/nucl-th/1/au:+Katori_T/0/1/0/all/0/1
https://arxiv.org/abs/1304.6014
https://arxiv.org/find/hep-ex/1/au:+Gran_R/0/1/0/all/0/1
https://arxiv.org/abs/1705.02932


 (GeV)νReco E
0 1 2 3 4

 P
.O

.T
.

20
10×

Ev
en

ts
 / 

9

50

100

150

310×
 CC candidatesµνAll 

True MEC only
Near Detector
All MEC uncertainties

NOvA Simulation

 (GeV)νReco E
0 1 2 3 4

Ra
tio

0.8
0.9

1
1.1
1.2

• Continue to tune MEC to match the excess in our data, now fit using default empirical 
MEC’s* model for energy transfer to the hadronic system (q0). 

• QE RPA from the Valencia group via Richard Gran** now included in central value tune. 
• New MEC and RPA uncertainties that better capture limits of theory & data constraints.

Retuned Interaction Modeling
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*   “Meson Exchange Current (MEC) Models in Neutrino Interaction Generators”, Teppei Katori, NuInt12 Proceedings, arXiv:1304.6014  
**  “Model uncertainties for Valencia RPA effect for MINERvA”, Richard Gran, FERMILAB-FN-1030-ND, arXiv:1705.02932 

https://arxiv.org/find/nucl-th/1/au:+Katori_T/0/1/0/all/0/1
https://arxiv.org/abs/1304.6014
https://arxiv.org/find/hep-ex/1/au:+Gran_R/0/1/0/all/0/1
https://arxiv.org/abs/1705.02932


Improved Detector Simulation
26 A. Radovic, JETP January 2018

• Previously detector response uncertainties were some of our largest. Reduced by an 
order of magnitude in new detector simulation, driven by addition of cherenkov light. 

• Absorbed and re-emitted Cherenkov light is a small but important in modeling the 
detector response to hadronic activity.  

• Expected energy resolution for νμ CC events moves from 7% to 9%.



New Flux
27 A. Radovic, JETP January 2018
• A new data driven flux, Package to Predict the FluX (PPFX), based on thin target 
hadron production data from NA49 and MIPP. 

• Comes with greatly reduced flux uncertainties. 
• Pioneered at MINERvA.

“Neutrino Flux Predictions for the NuMI Beam” 
MINERvA Collaboration (L. Aliaga et al.) 

Phys.Rev. D94 (2016) no.9, 092005 

http://inspirehep.net/search?p=collaboration:%27MINERvA%27&ln=en
http://inspirehep.net/author/profile/Aliaga%2C%20L.?recid=1473668&ln=en


Simulation
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νμ Disappearance
29 A. Radovic, JETP January 2018

1.Select, measure & characterize ND and FD νμ events. 
2.Extrapolate beam expectation to FD and measure cosmic 

expectation from FD data out of the beam spill window. 
3.Compare measured FD energy spectra to expectation.



DATA

Preselection cuts

PID Cut

Cosmic Rejection cuts

Basic Quality cuts

selection⌫µ

Quantile 1

|
{z

}

Resolution bins
Quantile 2

Quantile 3

Quantile 4
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~106 Events

Even with excellent timing resolution 
cosmogenic activity at the Far Detector 
remains a challenging background due to 
raw rate.
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~103 Events

Even with excellent timing resolution 
cosmogenic activity at the Far Detector 
remains a challenging background due to 
raw rate.
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Improved νµ Selection
32 A. Radovic, JETP January 2018

•New selection using CVN, a retuned 
cosmic rejection BDT, and a new PID cut 

•Equivalent background rejection with 
11% more signal selected.
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33 A. Radovic, JETP January 2018

•New selection using CVN, a retuned 
cosmic rejection BDT, and a new PID cut 

•Equivalent background rejection with 
11% more signal selected.
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Improved νµ Selection
34 A. Radovic, JETP January 2018

• Improvement is most pronounced in key low energy region. 
• Expected overlap between old and new PIDs is consequentially 
low, particularly in cosmic background events.



Reconstructed Neutrino Energy (GeV)
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Cosmic Background Prediction
35 A. Radovic, JETP January 2018

• Cosmic backgrounds are characterized using cosmic activity 
recorded out of the beam spill. 

• Final cosmic rate 
comes from cosmic 
activity recorded 
adjacent to the beam 
spill, ensuring 
perfectly matched 
detector performance.
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•Final reconstructed 
energy combines 
Ehad and Eµ via a 
piecewise linear fit.

Eres~3%Eres~30%

Eres~9%

νμ Energy Estimation
36 A. Radovic, JETP January 2018

•Observed ND spectrum is converted 
to true energy using MC expectation, 
extrapolated to FD using a Far/Near 
flux ratio, and then converted to an 
expected reconstructed energy 
spectra. 
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37 A. Radovic, JETP January 2018

•Four bins of equal populations in FD, split in hadronic energy 
fraction as a function of reconstructed neutrino energy. 

•Resolution varies 
from ~6% to ~12% 
from the best to 
worst resolution 
bins.

Quantile 1
Quantile 2

Quantile 3

Quantile 4



Resolution Bins
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Quantile 3
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RPA shape 
uncertainty 

extrapolation in 
one spectra.
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• Systematics were assessed by generating sets of shifted MC. 
• Those shifted datasets were used instead of our nominal MC to 
assess the impact on our final result. 
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Total 
Observed

Expectation 
at Best Fit

Total 
Background Cosmic Neutral 

Current 
Other 
Beam

All Q 
Events 126 129 9.24 5.82 2.50 0.96

νμ FD Selected Sample
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In the absence of oscillations we expect 763 events.126 were 
observed. 
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In the absence of oscillations we expect 763 events.126 were 
observed. 



Reconstructed Neutrino Energy (GeV)
0 1 2 3 4 5

Ev
en

ts
/0

.1
 G

eV

1

2

3

4

5

6
NOvA Preliminary

Data
Prediction

 syst. rangeσ1-
Beam bkg.
Cosmic bkg.

 POT-equiv.2010×8.85
NOvA Normal Hierarchy

 
 

Quantile 2

Reconstructed Neutrino Energy (GeV)
0 1 2 3 4 5

Ev
en

ts
/0

.1
 G

eV

1

2

3

4

5
NOvA Preliminary

Data
Prediction

 syst. rangeσ1-
Beam bkg.
Cosmic bkg.

 POT-equiv.2010×8.85
NOvA Normal Hierarchy

 
 

Quantile 1
best resolution

νμ FD Selected Sample
46 A. Radovic, JETP January 2018

Reconstructed Neutrino Energy (GeV)
0 1 2 3 4 5

Ev
en

ts
/0

.1
 G

eV

1

2

3

4

NOvA Preliminary

Data
Prediction

 syst. rangeσ1-
Beam bkg.
Cosmic bkg.

 POT-equiv.2010×8.85
NOvA Normal Hierarchy

 
 

Quantile 3

Reconstructed Neutrino Energy (GeV)
0 1 2 3 4 5

Ev
en

ts
/0

.1
 G

eV
1

2

3

4

5

6
NOvA Preliminary

Data
Prediction

 syst. rangeσ1-
Beam bkg.
Cosmic bkg.

 POT-equiv.2010×8.85
NOvA Normal Hierarchy

 
 

Quantile 4
worst resolution



νμ Result
47 A. Radovic, JETP January 2018

23θ2sin
0.4 0.5 0.6 0.7

)2
 e

V
-3

 (1
0

322
m

∆

2

2.2

2.4

2.6

2.8

3

3.2

NOvA Preliminary
NOvA Normal Hierarchy

 POT-equiv.2010×90% C.L. 8.85

 onlyµν

• Full joint fit with appearance analysis. Feldman Cousins corrections in 2D & 1D limits.  
• All systematics, oscillation pull terms shared. 
• Constrain θ13 using world 

average from PDG, sin22θ13 
= 0.082



νμ Result
48 A. Radovic, JETP January 2018

Best fit:
Δm232 = 
2.444+0.079-0.077 x 10-3 eV2

UO preferred at 0.2σ
sin2θ23 = 
UO: 0.558+0.041-0.033
LO: 0.475+0.036-0.044

• Full joint fit with appearance analysis. Feldman Cousins corrections in 2D & 1D limits.  
• All systematics, oscillation pull terms shared. 
• Constrain θ13 using world 

average from PDG, sin22θ13 
= 0.082
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• Full joint fit with appearance analysis. Feldman Cousins corrections in 2D & 1D limits.  
• All systematics, oscillation pull terms shared. 
• Constrain θ13 using world 

average from PDG, sin22θ13 
= 0.082

Best fit:
Δm232 = 
2.444+0.079-0.077 x 10-3 eV2

UO preferred at 0.2σ
sin2θ23 = 
UO: 0.558+0.041-0.033
LO: 0.475+0.036-0.044
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νμ Result- Comparison To Previous Result
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Our previous result*: 
2.6σ

New simulation & Calibration: 
~1.8σ

New selection and analysis: 
~0.5σ

Full dataset: 
~0.4σ

Driven by updates to energy response model. Drop to 2.3σ 
expected due to new energy resolution. Additionally we have a 
<70 MeV> shift in our hadronic energy response. This energy 
shift would be expected to move 0.5 events out of the “dip” 
region. However it instead pushes 3 "dip" events past a bin 

boundary.

For combined analysis changes 5% of pseudo-experiments in a 
MC study had this size shift or larger. This probability is driven by 

a low expected overlap in background events, and to second 
order the addition of resolution bins.

Full dataset*: 
0.8σ *Feldman-cousins corrected significance.

Our rejection of maximal mixing has moved from 2.6σ to 0.8σ. This 
change in the character of our result comes from a few key changes 

which I’ll break down below.

New, 2.8x1020 POT, data prefers maximal mixing.
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Our previous result*: 
2.6σ

New simulation & Calibration: 
~1.8σ

New selection and analysis: 
~0.5σ

Full dataset: 
~0.4σ

Driven by updates to energy response model. Drop to 2.3σ 
expected due to new energy resolution. Additionally we have a 
<70 MeV> shift in our hadronic energy response. This energy 
shift would be expected to move 0.5 events out of the “dip” 
region. However it instead pushes 3 "dip" events past a bin 

boundary.

For combined analysis changes 5% of pseudo-experiments in a 
MC study had this size shift or larger. This probability is driven by 

a low expected overlap in background events, and to second 
order the addition of resolution bins.

Full dataset*: 
0.8σ *Feldman-cousins corrected significance.

Our rejection of maximal mixing has moved from 2.6σ to 0.8σ. This 
change in the character of our result comes from a few key changes 

which I’ll break down below.

New, 2.8x1020 POT, data prefers maximal mixing.



Atmospheric Mixing and World Constraints
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•Consistent with world expectation. 
•Competitive measurement             
of Δm232.
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Best fit:
Δm232 = 
2.444+0.079-0.077 x 10-3 eV2

UO preferred at 0.2σ
sin2θ23 = 
UO: 0.558+0.041-0.033
LO: 0.475+0.036-0.044



νe Appearance
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1.Measure ND and FD νe and νμ Selected Spectra 
2.Break down ND νe selected events to separately extrapolate 

background components.  
3.Extrapolate ND νμ selected events estimate signal at the FD. Use FD 

data from outside of the beam spill to estimate cosmic backgrounds.  
4.Compare measured FD to expectation.
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Harsh cosmic rejection cuts also reject some signal 
events.  The addition of a new cosmic rejection BDT and 
a tight cut on CVN allow us to reclaim some of those 
events.
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Harsh cosmic rejection cuts also reject some signal 
events.  The addition of a new cosmic rejection BDT and 
a tight cut on CVN allow us to reclaim some of those 
events.
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events.
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events.  The addition of a new cosmic rejection BDT and 
a tight cut on CVN allow us to reclaim some of those 
events.



νe ND Selected Sample
64 A. Radovic, JETP January 2018

 (GeV)recoE
0 1 2 3 4 5

Da
ta

/M
C 

 
0.6
0.8

1
1.2
1.4

 P
O

T
20

10×
 E

ve
nt

s 
/ 8

.0
9

3
10 0

0.5

1

1.5

2

CVN e
0.75 0.8 0.85 0.9 0.95 1

Da
ta

/M
C 

 

0.6
0.8

1
1.2
1.4

 P
O

T
20

10×
 E

ve
nt

s 
/ 8

.0
9

3
10 0

0.5

1

1.5

2

•Signal prediction from the ND selected νμ spectra used in disappearance analysis. 
•Background prediction from ND selected νe data, data driven breakdown of the 
sample in order to extrapolate each component separately. 

•Final background correction: beam νe up by 1%, NC up by 20%, νμ CC up by 10%.



Muon Removed Electron Added Sample
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How to check 
our 
performance on 
our signal 
sample using 
the Near 
Detector?  

Try faking 
appeared 
electron 
neutrinos by 
creating hybrid 
data/simulation 
events.
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How to check 
our 
performance on 
our signal 
sample using 
the Near 
Detector?  

Try faking 
appeared 
electron 
neutrinos by 
creating hybrid 
data/simulation 
events.



Muon Removed Electron Added Sample
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Excellent data/MC agreement in MRE sample. Efficiency 
difference <2%:



νe Systematics
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Signal uncertainty (%)
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Background uncertainty (%)
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• As in νµ systematics were assessed by generating sets of shifted MC. 
• Those shifted datasets were used instead of our nominal MC to assess the impact on 

our final result. 
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Signal events 
(±9% systematic uncertainty): 

Background by component  
(±10% systematic uncertainty):

•Extrapolate each 
component in bins of 
energy and CVN output. 

•Expected event counts 
depend on oscillation 
parameters. 
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Observe 66 events in FD. Background Expectation 20.5±2.5.
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Joint Best Fits
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• Full joint fit with disappearance analysis. Feldman Cousins corrections in 2D & 1D limits. 
• All systematics, oscillation pull terms shared. 
• Constrain θ13 using world average from PDG, sin22θ13 = 0.082
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IH at δcp = π/2 
disfavored at greater 

than 3σ.

Approaching IH 
rejection at 2σ.
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• At 8.85x1020 POT, NOvA finds: 
• Muon neutrinos disappear: Competitive measurement of Δm232, new 
analysis prefers mixing near-maximal. 

• Electron neutrinos appear: Inverted Hierarchy at δcp = π/2 disfavored at 
greater than 3σ. Approaching 2σ IH rejection. 

• Excellent detector and beam performance. 
• Significant improvement in our analysis tools. Expected to continue, 
benefiting from efforts like the NOvA test beam. 

• Looking forward to opening the box on our first antineutrino data this 
summer! Expect NOvA to continue to contribute to key questions: 
• Is δcp nonzero?  
• What is the mass hierarchy? 
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